Biological and toxicological effects of chrome (vi) in the organism of animals and human beings

new site

This site is no longer updated!
The new website of the magazine is located at https://visnyk.lnup.edu.ua/

 

Visnyk LNAU: Agronomy 2019 №23: 268-271

Biological and toxicological effects of chrome (vi) in the organism of animals and human beings

Skab O., Candidate of Agricultural Sciences
ORCID ID: 0000-0002-0516-5731
Lviv National Agrarian University

https://doi.org/10.31734/agronomy2019.01.268

Annotation

Hexavalent chromium compounds are widely spread pollutants of anthropogenic origin, which are often in industrial wastes. Almost 35% of Chrome, emitted from anthropogenic sources, is in the form of Cr (VI). Many researches confirm pollution of water, air, soil of agricultural lands and residential territories of different countries, including Ukraine, with Chrome. Under such conditions, there is also pollution of fodder for agricultural animals with Cr (VI) compounds, causing worsening of their health and deterioration of the quality of food products of animal origin.

Chrome (VI) can penetrate the body of animals and human beings through digestive tract, respiratory system, skin. In all cases, it causes toxic effects, connected with deterioration of metabolism and functional activity of cells, violation of the structure and functions of biomolecules. A general toxic effect of those compounds is manifested in the damage of liver, kidneys, gastrointestinal tract, cardiovascular, immune and nervous system. A respiratory way of Cr (VI) penetration into an organism is particularly dangerous. Under such conditions, compounds of Chrome, depending on the portion and duration of penetration, cause local hurts to mucous membrane, develop allergic reactions, inflammatory processes, ulcus and tumors in respiratory organs.

Hexavalent Chrome is a genotoxin, which causes a wide range of violations of the chromosome structure and genetic transformations. Particularly, having entered an organism and a cell in the form of chromatic and dichromatic anions, Chrome (VI) is partially recovered to Cr (III), accompanied by creation of reaction-active forms of that element, i.e. Cr (V) and Cr (IV). Reaction-active forms of Chrome are capable to cause a wide range of DNA violations, inhibition of the processes of replication and transcription. Moreover, the processes of metabolic recovery of Cr (VI) result in development of toxic metabolites and reaction-active forms of Oxygen and Nitrogen, which force development of a cellular stress and the following toxic effects.

Key words

chromium, red blood cell, absorption, mutagenesis, carcinogenesis, teratohenez

Full text

pdf

Link

  1. Водяницкий Ю.Н. Тяжелые и сверхтяжелые металлы и металлоиды в загрязненных почвах. Москва: ГНУ Почвенный институт им. В.В. Докучаева Россельхозакадемии, 2009. 95 с.
  2. Палапа Н., Сігалова І., Сенчук С., Крикунова О. Екологічні аспекти оцінки стану ґрунтів сільських селітебних територій. Техніка і технології АПК: науково-виробничий журнал. 2011. № 5 (20). С. 34–36.
  3. Ричак Н. Л. Поведінка важких металів у ґрун¬тових покривах міських ландшафтів. Вісник Сумського державного університету. 2006. № 5 (89). С. 145–148.
  4. Сологуб Л. І., Антоняк Г. Л., Бабич Н. О. Хром в організмі людини і тварин. Львів: Євросвіт, 2007. 127 с.
  5. Assessment of Cr(VI)-induced cytotoxicity and genotoxicity using high content analysis / Thompson C.M., Fedorov Y., Brown D.D. et al. PLoS One. 2012. Vol. 7, N 8. P. е42720.
  6. Assessment of the mode of action for hexa¬valent chromium-induced lung cancer following inhalation exposures / D.M. Proctor, M. Suh, S.L. Campleman, C.M. Thompson. Toxicology. 2014. Vol. 325. P. 160–179.
  7. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans / C. M. Thompson, D. M. Proctor, M. Suh et al. Crit. Rev. Toxicol. 2013. Vol. 43, N 3. P. 244–274.
  8. ATSDR (Agency for Toxic Substances and Disease Registry). Toxicological Profile for Chromium. U.S. Department of Health and Human Services, Public Health Service (Ed.). 2012. 592 p.
  9. ATSDR. Chromium (TP-7). Toxicological Profile. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, 2008. 610 р.
  10. Bagchi D., Bagchi M., Stohl S. J. Chromium (VI)-induced oxidative stress, apoptotic cell death and modulation of p53 tumor suppressor gene. Mol. Cell Biochem. 2001. Vol. 222. P. 149–158.
  11. Barceloux D.G. Chromium. Clin. Toxicology. 1999. Vol. 37, N 2. P. 173–194.
  12. Blasiak J., Kowalik J. A comparison of the in vitro genotoxicity of tri- and hexavalent chromium. Mutat. Res. 2000. Vol. 469, N 1. Р. 135–145.
  13. Chromium oxide nanoparticle-induced genotoxicity and p53-dependent apoptosis in human lung alveolar cells / Senapati V. A., Jain A. K., Gupta G. S. et al. J. Appl. Toxicol. 2015. Vol. 35, N 10. P. 1179–1188.
  14. Costa M. Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit. Rev. Toxicol. 1997. Vol. 27, N 5. P. 431–442.
  15. Elevated levels of DNA-protein crosslinks and micronuclei in peripheral lymphocytes of tannery workers exposed to trivalent chromium / Medeiros M.G., Rodrigues A.S., Batoréu M.C. et al. Mutagenesis. 2003. Vol. 18, 1.
  16. P. 19–24.
  17. Embryotoxicity and fetotoxicity of orally administered hexavalent chromium in mice. B. Trivedi, D. K. Saxena, R. C. Murthy, S. V. Chandra. Reprod. Toxicol. 1989. Vol. 3, N 4. P. 275–278.
  18. EPA (Environmental Protection Agency). National Air Pollution Emission Trends 1900–1998, 1998 Emissions, United States Environmental Protection Agency. URL: http://www.epa.gov/ttnchie1/trends/trends98/ trends98. pdf (last accessed 24.04.2019).
  19. Estimates of the chromium (VI) reducing capa¬city in human body compartments as a mechanism for attenu¬ating its potential toxicity and carcinogenicity / De Flora S. et al. Carcinogenesis. 1997. Vol. 18, N 3. P. 531–537.
  20. Genotoxicity of chromium compounds. A re¬view. Flora S. De, Bagnasco M., Serra D., Zanacchi P. Mutat. Res. 1990. Vol. 238. Р. 99–172.
  21. Genotoxicity of tri- and hexavalent chromium compounds in vivo and their modes of action on DNA damage in vitro. Z. Fang, M. Zhao, H. Zhen et al. PLoS One. 2014. Vol. 9, N 8. P. e103194.
  22. Groundwater contaminated with hexavalent chromium [Cr (VI)]: a health survey and clinical examination of community inhabitants (Kanpur, India). Sharma P., Bihari V., Agarwal S.K. et al. PLoS One. 2012. Vol. 7, N 10. P. e47877.
  23. IARC monographs on the evaluation of carci¬nogenic risks to humans. Chromium, nickel and welding. Lyons, France: International Agency for Research on Can¬cer, World Health Organization, 1990. Vol. 49. Р. 49–256.
  24. IARC monographs on the evaluation of the carcinogenic risks to humans: a review of human carcinogens: arsenic, metals, fibres, and dusts. Lyon, France: World Health Organization, International Agency for Research on Cancer, 2012. Vol. 100C. Р. 147–168.
  25. Investigations on the nephrotoxicity and hepatotoxicity of trivalent and hexavalent chromium compounds. Dartsch P.C., Hildenbrand S., Kimmel R., Schmahl F.W. Int. Arch. Occup. Environ. Health. 1998. Vol. 71, Suppl. Р. 40–45.
  26. Kanojia R.K. et al. Embryo and fetotoxicity of hexavalent chromium: a long-term study. Toxicol. Lett. 1998. Vol. 95, N 3. P. 165–172.
  27. Meluzzi A. et al. Feeding hens diets supplemented with heavy metals (chromium, nickel, and lead). Arch. fur Geflugelkunde. 1996. Vol. 60. P. 119–125.
  28. Review of the evidence regarding the carcinogenicity of hexavalent chromium in drinking water / Sedman R. M., Beaumont J., McDonald T. A. et al. J. Environ. Sci. Health. C. Environ. Carcinog. Ecotoxicol. Rev. 2006. Vol. 24. P. 155–182.
  29. Sasso A. F., Schlosser P. M. An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach. Toxicol. Appl. Pharmacol. 2015. Vol. 287, N 3. P. 293–298.
  30. Snow E. T. Effects of chromium on DNA replication in vitro. Environ. Health Perspect. 2004. Vol. 102 (Suppl 3). P. 41–44.
  31. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia / Geb¬rekidan A., Weldegebriel Y., Hadera A., Van der Bruggen B. Ecotoxicol. Environ. Saf. 2013. Vol. 95. P. 171–178.
  32. Weldegebriel Y., Chandravanshi B. S., Wondimu T. Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Ababa, Ethiopia. Ecotoxicol. Environ. Saf. 2012. Vol. 77. P. 57–63.
  33. Zhitkovich A. Chromium in drinking water: Sources, metabolism, and cancer risks. Chem. Res. Toxicol. 2011. Vol. 24. P. 1617–1629.
титулка Екон